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ur story begins, I would say, as many others

experiences in Econophysics from casual and very

particular facts often with family or friends in

between. I still remember how I decided to start my PhD in

Physics and how I felt attracted to this heterodox and

multidisciplinar research field. This was in 1996. The year I

finished my graduate studies in Physics. My father who has

been working for almost 40 years as a fund manager and

trader explained me in a rather unconcrete manner that a

large amount of physicists were hired in Dow Jones as

something called quants . He told me that they were very

well considered mainly for two reasons: they know more

statistics and mathematics than a regular economist and

they provide quick answers without the need of building

compact theories and robust theorems as mathematicians

typically do.

Few months later, the Nobel prize 1997 was awarded to

Robert C. Merton and Myron S. Scholes “for a new method

to determine the value of derivatives”. The media trying to

explain the very curious story behind their finding

explained that the partial differential equation lying at the
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heart of Black-Scholes(-Merton) theory was precisely a

widely used equation in Physics: the backward Fokker

Planck equation . This second link between Finance and

Physics definitively motivated me to start my PhD in what

is called Econophysics. This field appeared to me very

attractive since it has a perfect balance between theory and

empirics. Observations are truly near (on your desk and in

your pc) and can be easily contrasted thanks to the birth of

electronic markets in early 1990s.

The Stochastic Dynamics and Transport Phenomena

group and his leader Prof Jaume Masoliver accepted me at

that moment to start a PhD research applying stochastic

processes and random walks to the study of financial

markets. The group did publish several relevant works on

Gaussian colored noise in the context of resonant

phenomena or the challenging but classic first-passage

problem among others with practical interest in reaction

dynamics in chemistry, light transport in optics or even

tumor growths in biomedicine. Our purpose was to shift

this powerful methodologies and know-how to the study of

such a particular human activity like speculative markets.

We were specially looking at the financial time series and

to the possibilities of modelling this paths using stochastic

dynamics. Our approach was to provide a different insight
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to financial mathematicians and econometricians remaining

closer to empirics and we were aimed to follow the path

opened with several pioneering works in Econophysics. For

many reasons, we were particularly interested by the

pioneering works of Eugene H. Stanley , Rosario N.

Mantegna , and Jean-Philippe Bouchaud .

From that moment, the whole group on Physics and

Finance: Jaume Masoliver, Josep Maria Porrà, Miquel

Montero and myself started to work in Econophysics in

different ways. The first temptative was to run a research on

bonds for a trading company. The following contributions

also included research in academia. My colleagues in the

group published a first paper providing a model to the stock

price statistics observations described by Mantegna and

Stanley . The model is an extension of the diffusion

process adding a shot-noise corresponding to the abnormal

vibration in price that Merton proposed in 1976 . The new

contribution describes self-similarity and fat tails

distribution of prices observed in empirical data. One year

later, we presented a description of the Black Scholes

pricing method with the differential calculus aimed by

physicists: the Stratonovich convention . The contribution

is nothing more (but not for this less important) than a

reinterpretation of the Black-Scholes option price derivation

but with a friendly language from physicist point of view.

Subsequent contributions were mostly focused on option

pricing and how to add easily the effects of time correlation

and fat tails in the Black-Scholes option pricing

methodology .

Other contributions were following some well-known

techniques coming from Mathematical Finance like

Malliavin Calculcus of American Option computational

methods. These were made with the collaboration of Miquel

Montero and myself with Prof Arturo Kohatsu who at that

time was based in the Departament of Economics in

Universitat Pompeu Fabra .

The current paper is however focussed mainly on our

more important research areas: the stochastic volatility

modelling and the continuous time random walk approach.

Other contributions not fully motivated in the following

chapters are those concerning time series analysis with

Diffusion Entropy (with Luigi Palatella and Ingve

Simonsen from Dresden University) , agent based

modelling for the order book and price dynamics with

Prof Giulia Iori from City University and Prof Carl

Chiarella from Sidney University and downside risk

analysis for hedge funds . We also have studied the effect

of taking the difference of stock prices instead of taking the

difference of logarithm of prices . At that time some

physicists were still taking differences instead of
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logarithmic differences. The choice may lead to important

errors in the statistical analysis

The multiplicative diffusion process known as the

geometric Brownian motion has been widely accepted as a

universal model for speculative markets. The model,

suggested by Bachelier in 1900 as an ordinary random

walk and redefined in its final version by Osborne in

1959 , presupposes a constant volatility , that is to say, a

constant diffusion coefficient D. However, and especially

after the 1987 crash, there seems to be empirical evidence,

embodied in the so-called stylized facts , that the

assumption of constant volatility does not properly account

for important features of markets. It is not a deterministic

function of time either as might be inferred by the evidence

of nonstationarity in financial time series but a random

variable. In its more general form one therefore assumes

that the volatility is a given function of a random process.

The 2002 is an important year for us since we opened a

new research line. Thanks to the observation by Bouchaud

and his colleagues of the leverage effect (or also called

return-volatility asymmetric correlation) . The phenomena

was already documented in the literature but this was the

first time we saw it in a quantitative way as physicists like

to observe temporal correlations. We observed that the

Stochastic Volatility (SV) models, which assumes a random

volatility with its own diffusion process, are able to explain

in a very natural way the leverage effect and other statistical

observations related to volatility. These sort of models were

proposed by several financial mathematicians specially

after the 1987 financial derivatives crash in order to include

fat tails behaviour in the option price evaluation. However,

they were not deeply explored as models able to reproduce

the financial time series. Research was mainly devoted to

obtain a better estimation of option prices.

We noticed that the SV models (also called in Physics

random diffusion ) is a very natural choice for explaining

the leverage effect. Even the simplest, the Stein and Stein

model assuming that volatility follows an Orstein-

Uhlenbeck process, gives reason to this very peculiar

return-volatility correlation. We investigated and confronted

their abilities with daily data from Dow Jones and other

financial markets . We were also looking for other stylized

facts we finally got the conclusion that among the simplest

models the exponential Ornstein-Uhlenbeck model is the

best. This model is able to explain simultaneously the

leverage correlation with a characteristic time scale of few

weeks and the volatility autocorrelation which is typically

important for time lags longer than a year . See an
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alternative model in Ref. with Bouchaud as a coauthor.

After these findings, we drew our attention to new tools

of quantifying risk. Extreme-value problems have a clear

financial interest apart from the obvious relation to the

classic ruin problem. As an example, among others, let us

mention the so-called leverage certificates (LCs) which are

structured products offering a nonzero pay-off only if the

underlying asset does not escape from a pre-established

domain over a certain time window. Although usually sold

as products insensitive to volatility, LCs are very sensitive

to skewness and kurtosis. On the other hand, SV models

result in fat tailed distributions for the return and show

clustering in the volatility, two well-established facts in

empirical data which are closely related to skewness and

kurtosis. For this reason, the solution to the escape problem

under stochastic volatility can be used to derive a more

precise price than that of the Wiener process for a wide

class of LC products.

The study of first-passage and exit problems have a long

and standing tradition in physics, engineering, and natural

sciences. Perhaps the most important example of an exit

problem in physics is provided by the Kramers problem

where one studies the possible escape, owing to noise, of a

system from a stable estate. Classical examples of first-

passage problems are the collapse of mechanical structures

because of random external vibrations which attain an

extreme amplitude beyond the stability threshold, or the

false alarm problem where internal fluctuations induce the

current or voltage of an electric circuit to reach a critical

value for which an alarm is triggered.

We first addressed a partial aspect of the problem: that

of extreme times for the volatility regardless the value of

the price return . We afterwards focussed on a specific

model, the so-called Heston model , which for mesoscopic

time windows (longer than a day but shorter than a year)

provide a realistic picture of the stock price statistics. We

first solved the overall escape problem associated with both

return and volatility. We obtained not only the exact

expression of the mean escape time (MET) but also the

exact survival probability . We solved the first-passage

problem for the Heston random diffusion model as well .

We obtained exact analytical expressions for the survival

and the hitting probabilities to a given level of return. We

obtained approximate forms of these probabilities which

prove, among other interesting properties, the nonexistence

of a mean-first-passage time. One significant result is the

evidence of extreme deviations –which implies a high risk

of default– when certain dimensionless parameter, related to

the strength of the volatility fluctuations, increases. We

confronted the model with empirical daily data and we

observe that it is able to capture a very broad domain of the
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hitting probability. We believe that this may provide an

effective tool for risk control which can be readily

applicable to real markets both for portfolio management

and trading strategies. This is still an ongoing task. We are

now particularly focussing our energy on intraday and high

frequency data.

Other contributions within the SV modelling concern

visualizing with maximum likelihood methods (in

collaboration with Zoltan Eisler now working in CFM

research area with Bouchaud) the hidden path of the

random volatility , or giving price to option contracts

through simulation or through Black-Scholes theory

assuming different SV underlying dynamics. One of these

contributions has been done with Prof Ronnie Sircar from

Princeton University.

The continuous time random walk (CTRW), first

introduced by Montroll and Weiss , has become a widely

used tool for studying the microstructure of random process

appearing in a large variety of physical phenomena. These

range from transport in disordered media, earthquake

modelling and even solar surface kinetics, to name just a

few. Our aim has been to extend the fields of application of

the CTRW analysis by including the dynamics of financial

markets. In fact, this formalism was the first tentative

model known in finance, having been suggested by

Bachelier to describe stock market dynamics and give a

price for a European call option. In fact, Bachelier modelled

the price evolution assuming that prices change one unit at

each time step with a probability of going up and 1 – of

going down. Thus, there are only two possible events. This

process is called the binomial model and is the simplest

random walk.

Despite this promising fact, the CTRW had been hardly

known among financial analysts for decades. Physicists

have recently provided only a few examples of CTRWs

applied to finance. Thus, the papers by Scalas in

2000 were among the first works addressed to this issue.

We have also contributed in further developments since the

group has a long experience in the CTRW with the

collaboration of Prof George Weiss . Perhaps one of the

most solid reasons in favor of CTRW models is that they

provide general expressions for the distribution of prices at

time in terms of two auxiliary densities that can be

estimated from data: the probability density function (pdf)

of the pausing time between ticks ( ) and the density for

the magnitude of the price increment at a given tick ( ).

Other quantities, such as the distribution of daily or

longer-time prices based on two probability density

functions can be obtained using the CTRW formalism .
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This in turn allows for the possibility of dealing with

inverse problems, that is, estimating from the observed

daily or longer-time data the forms of the microscopic

functions (t) and ( ) . This is useful since in many

practical situations, one only has, at most, daily data. In this

case our formalism enables us to determine features of the

otherwise unknown microscopic structure of the financial

process.

We studied theoretical and empirical aspects of the

mean exit time (MET) of financial time series within

the framework of continuous time random walk.

Reference is done with the group of Prof Mantegna from

Palermo. We empirically verify that the mean exit time

follows a quadratic scaling law and it has associated a

prefactor which is specific to the analyzed stock. We

perform a series of statistical tests to determine which kind

of correlation are responsible for this specificity. The main

contribution is associated with the autocorrelation property

of stock returns. Following these approach we dealt also

with correlations and cross-correlations in this context but

also looking at the distribution of prices .

We also studied the statistics of the waiting time

between transactions in many ways . In this sense, we

could stress an approach directly inspired by the Valley

Model which was initially proposed to describe the

powerlaw relaxation of photocurrents created in amorphous

materials with the group of Prof Ryszard Kutner from

University of Warsaw. It is well known that the inter-event

statistics observed in these contexts differs from the

Poissonian profile by being a long-tailed distributed with

resting and active periods interwoven. Understanding

mechanisms generating consistent statistics has therefore

become a central issue. The approach represents an

analytical alternative to models of nontrivial priority that

have been recently proposed. Our analysis also goes one

step further by looking at the multifractal structure of the

interevent times of human decisions. We observe that

empirical data describe a subtle multifractal behavior .

Following the same approach we analyzed the

thermodynamical consequences for these observations .

Other studies are based on the link of option pricing and

CTRW framework .

After 13 years of experience in this field we have

published more than 40 papers in peer-review Physics

journals and Economics journals. Since we started two of us

have obtained a permament position in Departament de

Física Fonamental of Universitat de Barcelona inside

Condensed Matter area of knowledge. There are some other

� h x 51,52

53–55

55

56,57

50,58,59

60

58

61

62

Econophysics in Spain: Some Concluding

Remarks

experiences like ours in Spain although they are more

shifted to social dynamics or to complex networks more

likely to use simulations and numerical methods. There is

no other group, as far as I know, fully devoted on the study

of financial markets with a physicist perspective with such

a large number of permanent staff involved. Some relevant

groups from Barcelona, Palma de Mallorca (the quite big

Institute for Cross-Disciplinary Physics and Complex

Systems) or from Madrid (Universidad Carlos III although

from a Department of Mathematics) have published

respectively interesting papers on the world trade web

flows , on transmission of information and herd behavior

in financial markets and on cooperation if this can be

understood as economics as well . It is worth mentioning

the work by Esteban Moro has contributed in the study of

minority games , decision making in financial trading

mostly based on information arised from the order

book .

In a larger scale, one can add that some institutions are

teaching Econophysics inside Multidisciplinar Physics

Master Programms like the one we teach in “Computational

and Applied Physics”’ (Universitat Politècnica de

Catalunya and Universitat de Barcelona) or the “Physics of

Complex Systems”’ (Universidad Complutense,

Universidad Nacional de Educación a Distancia,

Universidad Politécnica de Madrid and Universidad Carlos

III Madrid). However, there is no post-graduate course

program fully devoted to this area. It is finally relevant to

say that it already exists a network of about 30 senior

researchers on physics of economic and social systems

(econosociophysics) from several universities which enable

us to be in contact with other Spanish groups and share

experiences in this young multidisciplinary area.

JP acknowledges financial support from Dirección

General de Investigación under contract No. FIS2009-

09689.
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